43,312 research outputs found

    Stabilising entanglement by quantum jump-based feedback

    Full text link
    We show that direct feedback based on quantum jump detection can be used to generate entangled steady states. We present a strategy that is insensitive to detection inefficiencies and robust against errors in the control Hamiltonian. This feedback procedure is also shown to overcome spontaneous emission effects by stabilising states with high degree of entanglement.Comment: 5 pages, 4 figure

    Semiclassical Series from Path Integrals

    Get PDF
    We derive the semiclassical series for the partition function in Quantum Statistical Mechanics (QSM) from its path integral representation. Each term of the series is obtained explicitly from the (real) minima of the classical action. The method yields a simple derivation of the exact result for the harmonic oscillator, and an accurate estimate of ground-state energy and specific heat for a single-well quartic anharmonic oscillator. As QSM can be regarded as finite temperature field theory at a point, we make use of Feynman diagrams to illustrate the non-perturbative character of the series: it contains all powers of \hbar and graphs with any number of loops; the usual perturbative series corresponds to a subset of the diagrams of the semiclassical series. We comment on the application of our results to other potentials, to correlation functions and to field theories in higher dimensions.Comment: 18 pages, 4 figures. References update
    corecore